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Hyperspectral Neural Radiance Fields

Supplementary Material

Qualitative Results Website662

Please also refer to https://hyperspectral-663

nerf . github . io / supplemental - results -664

webpage for qualitative results.665

A. Introduction to Supplementary Material666

In this work, we demonstrated that Neural Radiance Fields667

(NeRFs) can be naturally extended to hyperspectral data668

and are a well-suited tool for hyperspectral 3D reconstruc-669

tion. The implementation details provided in this supple-670

mental document describe our simple approach to hyper-671

spectral NeRF, but we anticipate future works by the com-672

munity will improve upon our baseline implementation us-673

ing our to-be-published dataset, future larger datasets, ad-674

ditional architecture and hyperparameter tuning, and recent675

advances in NeRFs.676

Our full code and dataset will be made publicly available677

for the camera ready version.678

B. Camera Pose Canonicalization679

To tightly bound the scene to the objects of interest, we680

canonicalize the camera poses as shown in Fig. 9 and com-681

pute a bounding box centered at the origin whose size is682

determined by the camera’s field of view. This is a common683

practice in NeRFs to improve training stability and perfor-684

mance.685

Scene Bounds

Camera FOV

Figure 9. To tightly bound the scene to the objects of interest, we
canonicalize the camera poses as shown and compute a bounding
box centered at the origin whose size is determined by the cam-
era’s field of view.

C. Implementation Details 686

We build upon nerfstudio’s nerfacto implementation, from 687

commit ef9e00e. Our code will be made publicly available 688

for the camera ready paper. The original nerfacto pipeline 689

and field are shown in Figs. 10 and 11 respectively. 690

As briefly summarized in the main paper, we make rela- 691

tively minimal modifications to the pipeline and field. Us- 692

ing the notation from Section 5.4: Ablations, C1 only 693

changes the rightmost MLP in Fig. 11 to output 128 chan- 694

nels in the last layer instead of 3; C2 changes the positional 695

hash encoding (� in Fig. 11) to take 4 inputs instead of 3 696

(appending �) and changes the rightmost MLP to only have 697

1 output for c instead of (r, g, b); and C is shown in Fig. 2 698

(bottom) of the main paper. For C, the sinusoidal encoding 699

for � is taken to have 8 terms (tested 2, 4, 8, 16 terms, with 700

8 performing marginally better than 4 and 16, and 2 signifi- 701

cantly worse). Also for C, the component C(�;⇥C) MLP 702

from Fig. 2 of the main paper was taken to be identical to 703

the rightmost MLP in Fig. 11 except with the appropriate 704

additional number of inputs to accommodate concatenating 705

the sinusoidally encoded wavelength, and with only 1 out- 706

put for c instead of 3 for (r, g, b). The latent vector ⇥C was 707

taken to be the same size as in the nerfacto implementa- 708

tion (15-dim), with increasing the size to 32 and 64 showing 709

Figure 10. The original nerfacto pipeline (from nerfstudio docs)
contains a proposal sampler, which is analagous to the “coarse”
field from the original NeRF paper [21], and a “Nerfacto Field”,
which is analagous to the primary network from the original NeRF
paper (F⇥).

Figure 11. The original nerfacto field (from nerfstudio docs) is
very similar to the original NeRF paper [21], but includes appear-
ance embeddings [19] and uses slightly different encodings for the
position and direction. This figure is reproduced in Fig. 2 of our
main paper.
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negligible performance improvement but increased training710

instability.711

Similarly, �0 is the stock nerfacto field (scalar); �1 only712

changes the left MLP in Fig. 11 to have 128 outputs; �2713

changes the positional hash encoding to take 4 inputs, and �714

is as shown in Fig. 2 (bottom) of the main paper. The addi-715

tional component �(�;⇥C) MLP has 3 layers with 64-dim716

hidden layers and ReLU activations. The sinusoidally en-717

coded � is shared with C and the latent ⇥� vector is shared718

with (identical to) the ⇥C vector.719

Finally, P0 is the stock nerfacto proposal network while720

P� augments the proposal network with the wavelength.721

For P�, the position is first run through a hash encoding722

and MLP as in P0, except the MLP outputs a latent vec-723

tor of dimension 7 instead of a scalar density. This latent724

vector is concatenated with a 2-term sinusoidally encoded725

wavelength and fed through a 2-layer network with 7-dim726

hidden layer to output a scalar density for inverse transform727

ray sampling. Like the original nerfacto pipeline, this sam-728

pling step occurs twice with identical architecture (but dif-729

ferent weights) proposal networks.730

Reiterating our implementation, our primary HS-NeRF731

implementation uses C(�;⇥C), �0(�;⇥�), and P0, which732

we find to produce good results while also enabling wave-733

length interpolation.734

C.1. RGB Implementations735

Pseudo-RGB wavelengths. For the purposes of generat-736

ing pseudo-RGB images, on the Surface Optics datasets we737

use the wavelengths 622nm, 555nm, and 503nm for R, G,738

and B channels respectively.739

For the BaySpec datasets, we use a slightly more in-740

volved approach. We found that the BaySpec datasets were741

more sensitive to noise saturation and white balance, so742

we use an approach similar to that described in Section743

6.2 of the main paper to generate pseudo-RGB images.744

Specifically, we first manually identify 5-10 point corre-745

spondences between a hyperspectral image and an iPhone746

photo of the same scene to represent pairs of colors that747

should be the same. Expressing the n points in the hyper-748

spectral image as X 2 R128⇥n and in the iPhone photo749

as Y 2 R3⇥n, we solve for a linear transformation A 2750

R3⇥128 = argminA0 kY � A
0
Xk2 using the least squares751

solution. We then use this transformation to convert the hy-752

perspectral image to pseudo-RGB. After using this initial753

approach to boot-strap certain components of the pipeline,754

we later apply the method described in Section 6.2 to gen-755

erate pseudo-RGB renderings.756

HS-NeRF RGB variation implementations. For the757

purposes of making a quantitative comparison to standard758

RGB NeRF, Section 5.2 and Table 1 of the main paper759

present variations of our approach applied to just 3-channel760

(RGB) images instead of the full 128-channel hyperspectral 761

data. As described in the caption of Table 1, “Ours-Cont” 762

refers to our HS-NeRF implementation but trained on only 763

3 wavelengths (so we maintain a continuous representation 764

for radiance spectra, but have very weak supervision of only 765

3 channels), “Ours-RGB” refers to C1,�1, P0 with 3 out- 766

put channels for both C1 and �1, and “Ours-Hyper” refers 767

to our HS-NeRF implementation trained on all 128 wave- 768

lengths. In the table for Ours-Hyper, PSNR and SSIM are 769

evaluated over all 128 wavelengths while LPIPS is evalu- 770

ated on the RGB images obtained using the Pseudo-RGB 771

procedure. 772

D. Training Details 773

All networks were trained for 25000 steps, with 4096 train 774

rays per step using the Adam optimizer. The proposal net- 775

works and field both used lr=1e-2, eps=1e-15, and an expo- 776

nential decay lr schedule to 1e-4 after 20000 steps. Camera 777

extrinsic and intrinsic optimization were both turned off, 778

since evaluation metrics are skewed if camera parameters 779

are modified. To accommodate imperfect camera poses, af- 780

ter COLMAP, stock nerfacto was run on Pseudo-RGB im- 781

ages for 100000 steps with camera optimization turned on 782

and the resulting camera pose corrections were saved and 783

used in subsequent tests. The Surface Optics datasets took 784

roughly 20 minutes to train HS-NeRF while the BaySpec 785

datasets took roughly 40 minutes to train on an RTX 3090 786

due to the need to re-cache a new set of 32 images every 50 787

steps (see next paragraph). Most architectures required sim- 788

ilar training times, with the exception of the last two rows 789

of the ablation: C2�2P0 and C�P� took at roughly three 790

times as long. 791

For the Surface Optics datasets, of the 48 images per im- 792

age set, 43 were used for training and 5 withheld for evalu- 793

ation. Each step, the 4096 training rays were sampled ran- 794

domly from all 43 training images, except for row 6 of the 795

ablations where the training rays were sampled from only 796

10 of the 43 training images each step, with the choice of 797

10 images being re-sampled every 50 steps. The BaySpec 798

datasets were too large to fit in VRAM so rays were sam- 799

pled from 32 images every step, with the set of 32 images 800

being re-sampled every 50 steps, with row 6 of the ablations 801

being reduced to 12 images resampled every 50 steps. 802

In some approaches, not all wavelengths could be run for 803

every step due to VRAM limits so a subset of wavelengths 804

were sampled (randomly) for each step, but every sampled 805

wavelength was run for every ray in the step. For rows 1 806

and 2 of the ablations, every wavelength could be run every 807

step. For rows 3, 4 (HS-NeRF, ours), and 5, the number 808

of wavelengths sampled per step were 8, 12, and 6, respec- 809

tively. 810

For evaluation, every wavelength of every pixel of the 5 811

(Surface Optics) or 35 (BaySpec) evaluation images were 812
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Loss Curves for Pseudo-RGB NeRF

Figure 12. Loss curves for RGB NeRF correspond to the metrics
from Table 1 in the main paper. Most scenes have converged by
25000 steps except the Tools scene which appears to have diffi-
culty converging for all methods except “Ours-Cont”
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Loss Curves for Different Network Architectures (Ablations)

Figure 13. Loss curves for ablation testing (analagous to Table
3 in the main paper) shows that while the rosemary and basil
scenes optimize well, the tools scene does not converge partic-
ularly well for any method, re-emphasizing the suspected pre-
processing (COLMAP) inaccuracy.
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Figure 14. Loss curves for HS-NeRF trained with a subset of
wavelengths (analogous to Table 2 in the main paper) shows that
even training with only 1 out of every 8 wavelengths still has al-
most identical convergence rate w.r.t. number of steps.

evaluated and compared for each scene.813

D.1. Commentary on the Tools Scene814

The Tools scene experienced instabilities during training815

with several approaches including both HS-NeRF (ours)816

and nerfacto (RGB baseline). We anticipate that obtaining817

better camera intrinsics and extrinsics may correct this is-818

sue, since (a) every method had difficulty on this scene and819

(b) enabling camera pose optimization during NeRF train-820

ing improved convergence for all methods. Better camera821

intrinsics could be obtained by initializing COLMAP with822

the intrinsics obtained from other scenes, and better camera823

extrinsics could be obtained through a combination of tun-824

ing COLMAP parameters, utilizing turntable priors, and a825

longer NeRF-based camera pose refinement as described in826

Appendix D. The poor convergence on the Tools scene for827

all methods is illustrated in both Fig. 12 (green curves) and828

Fig. 13.829

D.2. Loss Curves 830

To demonstrate that all methods were fairly trained until 831

convergence, the loss curves corresponding to some met- 832

rics given in the main paper are shown. As mentioned, 833

the Tools scene appears to have difficulty converging for 834

all methods including baseline nerfacto, suggesting possi- 835

ble pre-processing (COLMAP) inaccuracy. This is evident 836

both in the green curves of Fig. 12 and in the rightmost plot 837

of Fig. 13. Evidencing the hyperspectral super-resolution 838

(spectral interpolation) application, Fig. 14 shows almost 839

identical training loss for all subsets of wavelengths trained 840

with. 841

E. Qualitative Example Results 842

A selection of example images and videos with brief ex- 843

planations are provided at https://hyperspectral- 844

nerf . github . io / supplemental - results - 845

webpage to better gauge our results qualitatively. 846
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